If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+22t-5=0
a = -16; b = 22; c = -5;
Δ = b2-4ac
Δ = 222-4·(-16)·(-5)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{41}}{2*-16}=\frac{-22-2\sqrt{41}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{41}}{2*-16}=\frac{-22+2\sqrt{41}}{-32} $
| 3x-12+5=17 | | X=(0.8x)/(1-x)(0.1) | | 8x+52+6x+86=180 | | 7x=63−2x | | 11x-29+7x-25=180 | | (5x+3)+31+31=180 | | (2x-8)+(4x-4)=180 | | y=-5(-1+-1y)-17 | | 9x-23+12x-56=180 | | 2x2-2x-112=0 | | 10x+55=180 | | 68-m=9(m+9) | | 7+y=-29 | | x-1/3+2x-4/5=4 | | x+35=149 | | 55x=70x+30 | | 12(4a)=12(4a) | | 72=(x)(x-1)(x+9) | | 2x/3+5x/4=23/24 | | 3t+64=t+84 | | d+79=2d-7 | | 12v+67=31v-47 | | (4x+1)^2-2(4x+1)=15 | | (4x+1)^2-2(4x+1)-15=0 | | 2/5x+6=5/7 | | 2x/7-x/3=4 | | 2(x-3)-3(x-1)=5-(x+1) | | 21/x=x/84 | | 54/x=x/6 | | x^2+8x+5=15 | | 144=12r+36 | | X+2=5x-6 |